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1 Introduction

Knowledge distillation (KD) is a process of training a “student” machine learning system using the
outputs of a pre-trained “teacher” model and it is a well-established practice in the optimization of
classical Deep Neural Networks (DNNs) [1]. Usually, it is enacted via the substitution of the output
softmax layer of the trained DNN teacher network with an equivalent layer of Boltzmann-temperature
parameterized sigmoid functions, leveraging gradient information implicit in the softened logits for the
training of the smaller student network. The smaller network is thus trained to replicate the output
sigmoid layer of the larger network during training [2].

However, KD remains relatively unexplored within the quantum machine learning domain, with
only a few pioneering studies [3], [4]. Some challenges in the quantum domain include the incongru-
ence of the respective learning architectures and the transferability of gradient information in inter-
domain approaches (e.g., classical-to-quantum distillation) or intra-domain transfer (e.g., quantum-
to-quantum distillation). Additionally, the scarcity of quantum-to-quantum distillation research could
be due to the current absence of sufficiently large and efficient quantum network architectures neces-
sitating a distillation step a priori.

In this work, we focus on the classical-to-quantum paradigm and investigate the extent to which
a hybrid quantum-classical architecture can effectively learn from the softmax outputs of a classical
Multi-Layer Perceptron (MLP) in multi-class classification tasks. The multi-class scenario is chosen
both for its representativeness of typical DNN usage and its inherently greater potential for meaningful
gradient information transfer. In doing so, we demonstrate substantial empirical efficiency gains for
classical-to-quantum KD in relation to an emblematic non-linearly separable 3-class problem. Our
findings reveal that classical-to-quantum KD enhances the performances of standard hybrid quantum
architectures and paves the way for the applicability of distillation techniques in the quantum realm.

2 Proposed Methodology

The implemented KD process involves a number of steps. For the specific case study illustrated
in the following, the teacher MLP is trained by optimizing its parameters using standard techniques.
Subsequently, the teacher outputs are utilized to distill the acquired knowledge into the smaller model,
which can be either a hybrid quantum-classical student or a classical student. Distillation occurs
through the use of a mixture of losses L = LCE + LKL, where LCE represents the cross-entropy loss

given by LCE = − 1
N

∑N
i=1

∑C
j=1 yi,j log ŷ

(s)
i,j , and LKL denotes the KL-divergence loss expressed as

LKL =
∑N

i=1 ŷ
(t)
i log

ŷ
(t)
i

ŷ
(s)
i

. Here, ŷ(t) and ŷ(s) represent the outputs of the teacher and student models,

respectively; N is the number of datapoints considered; C is the number of classes; ŷ
(t)
i,j is the predicted

probability for the ith datapoint and the jth class.
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We have chosen a teacher architecture given by an MLP with k(t) = 1203 parameters, consisting of

an input layer with n
(t)
i = 64 neurons, two hidden layers with h1 = 16 and h2 = 8 neurons, respectively,

and an output layer with n
(t)
o = 3 neurons. We use ReLU activation functions between the hidden

layers, and a final softmax transformation to recover class probabilities, as is standard practice. The
classical student architecture consists of an MLP with k(s) = 195 parameters, a single layer having

n
(s)
i = 64 input neurons and n

(s)
o = n

(t)
o output neurons. Additionally, for the student architecture,

the output layer is associated with a softmax transformation. We remark that the model described
here is the smallest possible with respect to the number of parameters.

We defined multiple quantum students based on the same overall design principle, by leveraging a
parameterized quantum circuit for each student to efficiently read the input features using amplitude

embedding, enabling the encoding of n
(t)
i = 64 features into lnn

(t)
i = 6 qubits. Following the principles

of variational quantum algorithms, which allow for flexible choices of the ansatz, we employed a
hardware-efficient ansatz (HEA) [5] and a universal circuit (Universal) [6] able to reach every unitary

in su(2lnn
(t)
i ). We also considered two other variants: a universal circuit with amplitude embedding

followed by an Hadamard gate for each qubit (Universal + H); a universal circuit in which at each

layer one of the qubits is measured (qnd
), allowing for information compression from 2n

(t)
i states to 2nd

states, with nd ∈ {2, ..., 5} being the number of desired qubits in output.
In this setup, a measurement process is conducted on each qubit. Subsequently, the measurement

results are fed into an MLP, with input neurons corresponding to the number of measured qubits
and output neurons corresponding to the number of classes in the multi-class classification problem.
This processing step ensures robust outputs in the form of class probabilities, achieved through the
application of a softmax transformation. These hybrid structures, combined with amplitude encoding,
exhibit promising characteristics such as smaller feature representations (from 64 features to 6), which
allow for a notable reduction in parameter counts. i.e., from 195 of the classical MLP up to 74 when
using the smallest of the proposed architectures q2.

3 Experimental setup

To assess the effectiveness of classical-to-quantum KD, the introduced models were tested on an ex-

tended multidimensional XOR dataset with N = 1000 binary vectors of n
(t)
i = 64 bits and n

(t)
o = C = 3

classes, “zero”, “one” or “two”, depending on the value of the first two significant bits in each vec-
tor. This dataset was chosen in order to investigate the capabilities of the models in relation to the
linear separability of the associated classification problem. We remark that, in contrast to 2D case,
the generalized multidimensional XOR dataset is unbalanced: class zero has probability 1/2 of being
sampled, whereas class one and two have both probability 1/4 of being sampled. For this reason, we
chose to employ the F1 score as a performance metric, given by F1 = 2TP

2TP+FP+FN , where TP is the
number of true positives, FN is the number of false negatives, and FP is the number of false positives.

The models were implemented in Python 3.10.12 with PyTorch 2.3.0+cu121, with the aid of Pen-
nylane 0.36 for the implementation of the quantum models. The experiments were run on Google
Colab’s CPU. To ensure a good and fast convergence, the models were trained with the Adam opti-
mization algorithm with learning rate set to 0.1, ne = 300 epochs of training, early stopping set to 50
epochs, and 5 stacked layers of the chosen ansatz in the quantum student models.

The experiments were performed as follows. We first generated the generalized multidimensional
XOR dataset and divided it into 80% train samples, 10% validation samples and 10% test samples.
Then, we trained each of the architectures using s = 12 different initial seeds, in order to verify the
models’ consistency with respect to initialization of the parameters. Applying the trained models to
the test set resulted in multiple F1 test scores for each architecture; we then took the average of these
scores to compute the mean F1 test score and compare the architectures.
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4 Results

We report our preliminary experimental results in Fig. 1. KD allows for a significant increase in
the performance of the tested models, both in the classical-to-classical and classical-to-quantum ap-
proaches. The improvement is more significant for the classical-to-classical case, this may be due to
the number of parameters involved (we utilize approximately 2× the number of parameters for the
classical student compared to the hybrid counterparts). The main finding for consideration is that dis-
tilling knowledge in a hybrid architecture still results in an increased performance, even though these
architectures are more susceptible to parameter initialization, as evidenced by the related variances.
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Figure 1: Experiments results. Individual bins report the mean F1 score for each of the tested architectures: the classical MLP
student with or without KD, and the quantum students with or without KD. On the top of the bin is reported the variance of the
F1 scores obtained while on the base of the bin is reported the number of trainable parameters for the architecture.

Current limitations of Noisy Intermediate-Scale Quantum (NISQ) devices in terms of hardware
constraints and simulation capabilities prevent us from fully exploiting purely quantum architectures.
Consequently, the most effective strategy at present time is to integrate variational circuits with classi-
cal architectures, where KD can play a crucial role. Our findings point precisely to the effectiveness of a
teacher-student approach also in hybrid settings, expanding the applicability of distillation techniques
to the quantum machine learning domain.
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