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1 Background and Objectives

Generative modeling is a well-known technique that is gaining more and more attraction in recent
times, specifically due to its highly generalizable results in many fields. In brief, it makes use of
vast amounts of unlabeled data (observed variables) extracted from an unknown target probability
distribution; the goal is to automatically generate new samples from a (parameterized) distribution
that closely resembles the target distribution under a suitable norm. Among the possible successful
application fields there are computer vision and speech synthesis, with noteworthy architectures such
as variational autoencoders and autoregressive models [1].

Due to both theoretical and practical overlapping aspects, there is a strong connection between
generative models, statistical and quantum physics. Iconic architectures like Boltzmann machines
are linked to the Ising model, or revolve around probability estimation in immense spaces, as is the
case with Quantum Born Machines (QBMs) [2], [3]. In particular, these interrelations are evident
examining the Boltzmann distribution associated to a Boltzmann machine

pB(x) :=
e−H(x)∑
x e

−H(x)
, (1)

where H = H(x) is the Hamiltonian of the system composed of the observed variables. If the observed
variables are viewed as a snapshot of a particular quantum state |ψ⟩ = |ψ(x)⟩ collapsed on a fixed
basis, we can model via the Born’s rule the target probability distribution as:

pQ(x) :=
|ψ(x)|2∑
x |ψ(x)|2

. (2)

By using (2), we can translate a generation process into the learning problem of a quantum state,
where the quantum circuit preparing pQ has the capability to reproduce models as in (1).

In this work, we describe a new generative process comparable to traditional hybrid models in the
context of variational quantum algorithms. Also, we explore possible modifications of the proposed
model in order to increase its expressibility and provide enough flexibility to give an alternative to
QBMs, having the ability to work jointly with classical optimization routines. Thanks to an optional
constant-time parameter optimization and to a straightforward state preparation, we are able to also
avoid some of the known issues of trainability and generalization [3]. Performance assessment of the
proposed methodologies is carried out on benchmark datasets, showing promising results in terms of
closeness of the recovered post-measurement probabilities to the target density.

2 Quantum Generative Models

Given a target density p = p(x), if we can prepare it as wave function ψ = ψ(x), equation (2)
gives the possibility to recover p using its approximation pQ. Standard state preparation circuits
involve matrix product states (MPS) [4], where ψ is parameterized with respect to the set of observed
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variables X := {x1, . . . , xn} introducing suitable operators a(1)x1 , . . . ,a(n)xn and taking the trace:
ψ(x1, . . . , xn) = Tr(a(1)x1 , . . .a(n)xn). This representation can be learned from data via the maximum
likelihood principle by minimizing L(x1, . . . , xn) = 1

n

∑n
i=1 ln p(xi), which is equivalent to minimizing

the KL-divergence between pQ and the empirical distribution of the elements in the dataset X .
To recover p given X we may take an initial input state |ψ0⟩ and a sequence of parameterized

unitary operators U(θ) :=
∏k

j=1 e
iHjθj , where k is the number of layers in the corresponding general-

purpose Parametrized Quantum Circuit (PQC), θ = (θ1, . . . , θk) are (real, trainable) parameters,
and Hj ∈ iu(2n) are suitable observables. The evolved state |ψθ⟩ := U(θ)|ψ0⟩ yields a parametric
model as in (2) with |ψθ⟩ instead of |ψ⟩, and pQ = pQ(x; θ) depends also explicitly on θ. Parameters’
optimization happens via a quantum-classical training loop with the typical cost functionMα(pQ, p) :=∣∣∣∣∣∣∑x pQ(x; θ)α(x)−

∑
x p(x)α(x)

∣∣∣∣∣∣2, where α maps to a reproducing kernel Hilbert space (RKHS) [3].

Taking into consideration the two approaches sketched above, and inspired by [5], we can work
with pure states (instead of MPS) and tailored observables (instead of general-purpose PQCs), so
as to devise a generative model that is easy to train and generalizes well. In particular, given m
qubits, we aim at deriving |ψX⟩ =

∑2m−1
i=0

√
qX(i)|i⟩ which is a state given as a superposition of

standard basis elements, each weighted by a factor
√
qX(i) such that, upon measurement, it will hold

||qX(x)− p(x)|| → 0 as m → ∞ thanks to the Born’s rule. This way, we will have a quantum circuit
on m qubits that we can use to generate new samples taken from the distribution qX approximating
p without the need for costly parameter estimations.

A simple procedure to get the weights
√
qX(i) is “binnization”: take successive subdivisions Yl of

the training set X and aggregate the probabilities in each subdivision to get qX(i), where Y0 := X
and Yl is obtained from Yl−1 with a binary “cut”. For instance, if n is even, then

Y1 := ({x1, . . . , xn/2}, {xn/2+1, . . . , xn}) (3)

and, after a binary “cut”,

Y2 = ({x1, . . . , xn/4}, {xn/4+1, . . . , xn/2}, {xn/2+1, . . . , x3n/4}, {x3n/4+1, . . . , xn}), (4)

where qX(0) = 1, qX(1) =
x1+···+xn/2

x1+···+xn
, qX(2) =

xn/2+1+···+xn

x1+···+xn
, ..., qX(7) =

∑
xi∈Y2[3]

p(xi)∑
xi∈Y1[1]

p(xi)
, with Y1[0]

denoting the first component of Y1, Y2[0] the first component of Y2, and so on. Actually, we can
obtain the weights by taking the probability that a given observed variable is in the left side of the
bin at subdivision l, divided by the probability that the observed variable was in that bin, and using
a binary convention to order the weights.

A quantum circuit can be devised to obtain the desired superposition state |ψX⟩ using a combi-
nation of CNOT gates and Ry rotation gates [5]: we start with an ancillary register |ψ0⟩ = |00 . . . 0⟩,
perform the computation

√
qX(i)|i⟩|ψ0⟩ →

√
qX(i)|i⟩|θi⟩ with θi = arccos(2

√
qX(i)/qX(i− 1)), then

perform a controlled rotation on the (l+1)-qubit
√
qX(i)|i⟩|ψ0⟩ →

√
qX(i)|i⟩|θi⟩(cos θi|0⟩+ sin θi|1⟩).

By uncomputing the register containing θi we are left with the desired superposition state. As we can
see, the proposed methodology is straightforward, albeit with expressive power limited by the number
of qubits m, whereas typical state preparation circuits based on MPS are extremely powerful, but
require elaborate investigations about the tensor network structure used to prepare the wave function
and the sampling strategies based on conditional probability calculations [4].

A simple variant of the proposed methodology is obtained by letting some of the θi be independent
parameters of the observed variables. Some care must be taken since the θi are usually mutually
dependent due to the chain-like construction of the quantum circuit. A careful study of the entropy of
the generated state, as well as an expressibility analysis, are useful to deduce the number of effective
parameters. In any case, the training of the corresponding quantum circuit can be done in analogy
with the training of a QBM, without some of the related difficulties. Indeed, a QBM will have O(dm)
parameters, where d is the number of layers and m the number of qubits, whereas the proposed
methodology requires (heuristically) only O(1) parameters since we observed that there are only a
constant (problem-dependent) number of meaningful angles θi that need to be optimized. In fact, by
using the binnization, only θ1, θ2 are effective parameters, and considering other angles may hamper
the generation process, as shown in the following Figs. 1(f) and 1(h). Also, QBMs will produce only
quite restricted function classes, limiting their generalization capabilities, as shown in Figs. 1(a)-1(c).

2



3 Results and Discussion

We tested the proposed models on a univariate Gaussian dataset with σ = 2µ = 2, red line in
Figs. 1(a)-1(f), and the 8×8 MNIST dataset. Considering m = 3 qubits, the QBM with d ∈ {1, 2, 10}
layers, and 3(m+ 1)d parameters optimized for 10 epochs (without gradient information), we cannot
recover efficiently the Gaussian model, as shown in Figs. 1(a)-(c) with generated samples in blue,
whereas the proposed non-parameterized model performs well in Fig. 1(d). The parametrized model
with a parameter for each Ry gate (7 in total) if untrained performs poorly as in Fig. 1(e), but a 10
epoch training yields good samples in Fig. 1(f). Analogue results hold also for the MNIST dataset,
where only the proposed model and its variant are shown for reasons of space in in Figs. 1(g)-1(i).

Figure 1: Generative model based on the proposed QBM methodology: without trainable parameters
(Gen.); with untrained parameters (P.U. Gen.); with 7 trained parameters on 10 epochs (P.T. Gen.)
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