Publications

Publications

Journal Papers

  • Lavagna, L., Carillo, S., & Panella, M.
    A topical review on time-independent perturbation theory in one-dimensional quantum systems.
    Physica Scripta, 100 (10), 1–33, 2025.
    https://doi.org/10.1088/1402-4896/ae0a8f
    Keywords: one-dimensional quantum systems; perturbation theory; quantum computing.

  • Lavagna, L., Piperno, S., Ceschini, A., & Panella, M.
    Small graph perturbations, QAOA, and the MaxCut problem.
    AVS Quantum Science, 1–14, 2025.
    Publisher: AIP Publishing; AVS Science and Technology of Materials, Interfaces and Processing.
    ISSN: 2639-0213.
    Keywords: quantum approximate optimization algorithm; MaxCut problem; graph perturbations; quantum computing.

  • Buttitta, G., Lavagna, L., Bonacorsi, S., Barbarito, C., Moliterno, M., Saito, G., Oddone, I., Verdone, G., Raimondi, S., & Panella, M.
    Machine Learning-Guided microfluidic optimization of clinically inspired liposomes for nanomedicine applications.
    International Journal of Pharmaceutics, 686, 126362, 2025.
    https://doi.org/10.1016/j.ijpharm.2025.126362
    Keywords: machine learning; artificial intelligence; liposomes; microfluidics; nanomaterial; nanomedicine.

Conference Papers

  • Ceschini, A., Lavagna, L., De Falco, F., Rosato, A., & Panella, M.
    Convergenza e generalizzazione nelle reti neurali quantistiche.
    In Memorie ET2024, Gruppo Nazionale Ricercatori di Elettrotecnica, Italia, pp. 1–2, 2024.

  • De Falco, F., Lavagna, L., Ceschini, A., Rosato, A., & Panella, M.
    Evolving hybrid quantum-classical GRU architectures for multivariate time series.
    In IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2024), IEEE Computer Society, pp. 1–6, 2024.
    https://doi.org/10.1109/MLSP58920.2024.10734792
    Keywords: multivariate time series; quantum computing; quantum gated recurrent units; quantum machine learning.

  • De Falco, F., Piperno, S., Lavagna, L., Ceschini, A., Rosato, A., & Panella, M.
    Enhancing QAOA Ansatz via Multi-Parameterized Layer and Blockwise Optimization.
    In Proceedings of Quantum Techniques in Machine Learning (QTML 2024), pp. 1–3, 2024.

  • Lavagna, L., Ceschini, A., Rosato, A., & Panella, M.
    A layerwise-multi-angle approach to fine-tuning the quantum approximate optimization algorithm.
    In Proceedings of the International Joint Conference on Neural Networks (IJCNN 2024), IEEE, pp. 1–6, 2024.
    https://doi.org/10.1109/IJCNN60899.2024.10650075
    Keywords: quantum approximate optimization algorithm; layerwise-multi-angle approach; quantum computing.

  • Lavagna, L., De Falco, F., Piperno, S., Ceschini, A., Rosato, A., & Panella, M.
    Quantum Generative Modeling via Straightforward State Preparation.
    In Proceedings of Quantum Techniques in Machine Learning (QTML 2024), University of Melbourne, Melbourne, Australia, pp. 1–1, 2024.

  • Piperno, S., Lavagna, L., De Falco, F., Ceschini, A., Rosato, A., Windridge, D., & Panella, M.
    Quantum Enhanced Knowledge Distillation.
    In Proceedings of Quantum Techniques in Machine Learning (QTML 2024), University of Melbourne, Melbourne, Australia, pp. 1–1, 2024.

  • Ceschini, A., Lavagna, L., De Falco, F., Rosato, A., & Panella, M.
    Circuiti neurali quantistici per il processamento di grafi, immagini e serie temporali.
    In Memorie ET2025, Gruppo Nazionale Ricercatori di Elettrotecnica, Italia, pp. 1–2, 2025.

  • Lavagna, L., Ceschini, A., Piperno, S., Casalbore, M., Rosato, A., & Panella, M.
    Soluzioni quantistico-classiche per ottimizzazione e rilevamento di anomalie.
    In Memorie ET2025, Gruppo Nazionale Ricercatori di Elettrotecnica, Italia, pp. 1–2, 2025.

  • Rosato, A., Lavagna, L., & Panella, M.
    Integrazione del calcolo iperdimensionale nei circuiti digitali, nelle reti neurali e nelle architetture computazionali quantistiche.
    In Memorie ET2025, Gruppo Nazionale Ricercatori di Elettrotecnica, Italia, pp. 1–2, 2025.

  • Lavagna, L., De Falco, F., Ceschini, A., Rosato, A., & Panella, M.
    Trade-offs in Cryptosystems by Boolean and Quantum Circuits.
    In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2025), IEEE, pp. 1–5, 2025.
    https://doi.org/10.1109/ISCAS56072.2025.11043205
    Keywords: fault tolerance; circuits and systems; encryption; quantum mechanics; circuit theory.

  • Lavagna, L., De Falco, F., & Panella, M.
    Quantum Hyperdimensional Computing for Pattern Completion.
    In Proceedings of Quantum Techniques in Machine Learning (QTML 2025), pp. 1–1, 2025.

  • Lavagna, L., De Falco, F., & Panella, M.
    The Effectiveness of Classical and Hybrid Models for MaxCut problem.
    In Proceedings of Quantum Techniques in Machine Learning (QTML 2025), pp. 1–1, 2025.

  • Lavagna, L., De Falco, F., & Panella, M.
    Is the QAOA the Ultimate Solution for the MaxCut problem?
    In Proceedings of Quantum Techniques in Machine Learning (QTML 2025), pp. 1–1, 2025.