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Motivation & Context

• Classical cryptography aims to construct “high-level” tools, such
as encryption schemes, from “low-level” primitives, such as one-
way functions

• The main focus is on feasibility and efficiency tradeoffs.
• Quantum cryptography offers remarkable advances
• Feasibility-efficiency trade-offs when transitioning from classical

to quantum systems remains underexplored
• We explore this topic using a "bijection" between (quantum) 

cryptosystems and circuit theory
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Theoretical Framework

• Here we focus on trapdoor permutations (low-level) and 
symmetric encryption schemes (high-level)

• An attacker has chosen-ciphertext capabilities and oracle access 
to some parts of the system

• The systems can be either fully classical, fully quantum, or hybrid
• Quantum processing will be considered always within NISQ 

devices
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• Let f: {0,1}n → {0,1}n be a trapdoor permutation computable in
the forward direction in nO(1) time. A classical result by Hellman
provides key security guarantees. 

• Theorem: There exists a data structure D that occupies O(nS)
bits of memory, allowing f  to be inverted with a speedup of the
order (nO(1) 2n)/S.
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• For fixed-size cryptosystems, security can’t rely on efficiency
since an algorithm could store the entire lookup table of input
output pairs. 

• Boolean circuit complexity or code length versus running time
should be considered

• The tight bound is mt = Θ(ϵ2n).
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Classical trade-offs

• The relationship between one-way functions and encryption
schemes follows by mapping messages M of length |M| and 
keys a of length |a| to ciphertexts via (M, a)→ Enc(M, a)

• Security bounds for f generalize to encryption schemes. 
• On the other hand, if an encryption scheme is based on f and an 

adversary is an oracle algorithm, looking at the hardness of f  can 
yield useful information on the overall security.
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one-way function exists
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From classical to quantum trade-offs

• Theorem: Unless Enc queries f at least a number of times 
T =Ω((|M|-c)/log S), where for a public-key encryption scheme
c=0 and for a a private-key encryption c=|a|, an unconditional
one-way function exists

• What happens in a fault-tolerant quantum setting?
• From Grover's algorithm we gain a quadratic speedup!



From classical to quantum trade-offs

• Theorem: With advice of size S and a fault-tolerant quantum  
computation, inverting f is possible with time 

Ω(√2n/S) ≤ T ≤ min{O(√2n), O(2n/S)}



From classical to quantum trade-offs

• Theorem: With advice of size S and a fault-tolerant quantum  
computation, inverting f is possible with time 

Ω(√2n/S) ≤ T ≤ min{O(√2n), O(2n/S)}
• If S≤√2n, there is no quantum advantage, while for S≥ √2n, the 

quantum algorithm inverts f in time t = O(ϵ 2n) and advice plays no 
role. 
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The NISQ case

• But fault-tolerance is far ahead...
• We can consider Variational Quantum Algoritms (VQAs, or   

parameterized quantum circuits) and Quantum Walks
• Theorem: Having access to advice of size S and a NISQ device to  

invert f with error δ, if E is classical encryption scheme based on a
at least S-hard primitive, if ANISQ is a NISQ adversary, then ANISQ
breaks E with probability > ϵ when T = Ω(ϵ−2δ√(|M | − c)/S) with
c = |a| in the symmetric case and c = 0 in the asymmetric case.
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The NISQ case

• We report a comparison between chosen-ciphertext attacks on 
Caesar’s cipher and  a quantum walk attack using 100 random 
strings of length 5

• A classical frequency-based attack yields a success probability of 
0.01 < ϵ < 0.1

• A quantum walk achieves 0.3ϵ < ϵ′ < 1.6ϵ
• Similar, but worse, results occur with noisy Grover’s algorithm, 

indicating that NISQ advice is unreliable, and classical methods 
are likely more advantageous
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Conclusions & Future work

• We examined the intersection of classical cryptography and NISQ 
quantum circuits

• We analyzed feasibility-efficiency trade-offs and security 
implications

• Our findings suggest that the inclusion of noisy quantum tools 
may compromise the security of cryptographic systems that rely 
on trapdoor permutations as a primitive or model for encryption, 
but this scenario is unlikely with current devices, as shown also by 
the experiments
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Conclusions & Future work

• We are expanding the application domain to PRGs, signature 
schemes, etc...

• We have to analyze the case of quantum attackers against 
quantum cryptosystems

• We have to understand the tightness of the results
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