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Motivation & Context

O O © Use-case dependency: Limited sensitivity control:
\(')/ Methods are often tailored Hard to adjust how strict or
rrrrl to spe(_:|f|c appllcat!c_)ns, lenient the detection should

reducing adaptability.

be.

Interpretability:
Many models act as
black boxes, making

results hard to explain.

Evolving anomaly types: @ ﬁ\

New anomalies require
frequent model updates to D&
stay effective. o

Zamanzadeh Darban, Zahra, et al. "Deep learning for time series anomaly detection: A survey." ACM Computing Surveys 57.1 (2024): 1-42.

A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, “Machine learning for anomaly detection: A systematic review,” leee Access, vol. 9,pp. 78 658—78 700, 2021

Shaukat, Kamran, et al. "A review of time-series anomaly detection techniques: A step to future perspectives." Advances in information and communication: proceedings of the
2021 future of information and communication conference (FICC), volume 1. Springer International Publishing, 2021.
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The work at a glance

Focus Task Novelty
Time series analysis Anomaly Detection Quantum Optimization
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Quantum Anomaly Detection Pipeline
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Quantum Anomaly Detection Pipeline

1 QUBO
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QUBO: Quadratic Unconstrained Binary Optimization

min f(X) = CTX + XT0QX




QUBO: Quadratic Unconstrained Binary Optimization

min f(X) = CTX + XT0QX

Linear Quadratic
Model Distance
. Worei g ki et »
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QUBO: Quadratic Unconstrained Binary Optimization
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QUBO: Quadratic Unconstrained Binary Optimization

minf (X) = [¢

N
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QUBO: Quadratic Unconstrained Binary Optimization

min f(X) = CTX + XT0QX

minf (X) = [c; ... cy]
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+ [x1 ... xpy]
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Quantum Anomaly Detection Pipeline

1 QUBO QAOA
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QAOA: Quantum Approximate Optimization Algorithm

Algorithm
1. Instance problem Hp, Hy, H I A
2. Initial ansatz on y, 8 H e X
—iy,H —if1HM —iypHp —ifpHM
3. Run the circuit and measure [ e € ¢ ¢ o
4. Classical optimization for
f.B) H o

5. Adjust angles and re-run

circuit
f.B) \

Classical Optimizer

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation by adiabatic evolution,” arXiv preprint quant-ph/0001106, 2000
E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014
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QAOA: Quantum Approximate Optimization Algorithm

Algorithm
Counts
1. Instance problem Hp, Hy, Shots A
2. Initial ansatz on y, B z; = (1010011 ...0101]
3. Run the circuit and measure
L Mexprobabily L

4. Classical optimization for

fv.B)
5. Adjust angles and re-run

circuit T

1 [ ] >
. | IR | |

6. Final measurement 0 0 0 : 1 Quantum states
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Quantum Anomaly Detection Settings

Quantum circuit depth D Distance metric UL

Maximum iterations Fitting model @
Mixer Hy, Weights a, 8

Classical optimizer

Initial ansatz STARN
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Quantum Power

Shots A

Quantum Solver

z; = [1010011 ...0101]
zj = [1100100 ... 0100]

z: = [0101010 ... 1111]

RS S S S >

Quantum
states

Classical Solver

z* =[0101010 ... 1111]




Quantum Power

Shots A

Quantum Solver

z; = [1010011 ...0101]
zj = [1100100 ... 0100]

______ zk = (0101010 ... 1111]

T B e A E | J| > Anomalies

Quantum
states

Classical Solver

z* =[0101010 ... 1111]




Quantum Power

Counts
Shots A

Quantum Solver

z; = [1010011 ...0101]
z; = [1100100 ... 0100]

Max probability

zk = [0101010 ... 1111]
e - )

i | B e | | > Anomalies

Quantum
states

PROBLEMSs

We’re not after a fixed result — we want an
architecture that can learn. .
The detection acts as a black box — binary z" =[0101010...1111}
outputs with little interpretability.

Classical Solver
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Quantum Anomaly Detection Pipeline

SET
1 QUBO QAOA COVERING
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Set Covering

Training Data

V. N. Smelyanskiy et al., “A near-term quantum computing approach for hard computational problems in space exploration,” 2012
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Set Covering
N(A\Sﬁ Inductive Monitoring System (IMS)

Training Data Set Covering

V. N. Smelyanskiy et al., “A near-term quantum computing approach for hard computational problems in space exploration,” 2012
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Set Covering

» ¥ Inductive Monitoring System (IMS)

Coverage with large radius

z =[0101010 ...0011]

Coverage with small radius
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Set Covering
.y Inductive Monitoring System (IMS) l % Quantum Anomaly Detection

zj = [o@o@o@o 00@@] Centers
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Set Covering
AS &Y Inductive Monitoring System (IMS) l % Quantum Anomaly Detection

ge(z,{,n) = (z aijZiZj — 1 z b;z;
L,J i
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Set Covering

&Y Inductive Monitoring System (IMS)

0 SAPIENZA

) UNIVERSITA DI ROMA

l E.2 Quantum Anomaly Detection

ge(z,¢,m) = (z a;;z;zj — 1N z b;z;
L,J i
GOAL

Find(™,n"

such that

[
»

Given Z~
MAX normal points within the covering
MAX anomalies outside the covering




Set Covering

&Y Inductive Monitoring System (IMS) l 3# Quantum Anomaly Detection

ge(z,¢,m) = (z a;;z;zj — 1N z b;z;
L,J i
GOAL

Given Z”*
Find C* * such that ~ MAX normal points within the covering
1 - MAX anomalies outside the covering
® € represents the covering;
¢ Clij penalizes the overlaps;
¢ bi encourages all points to be included in at least one box;

¢ (, 1) tunable parameters.
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Quantum Anomaly Detection Settings

Quantum circuit depth D Distance metric UL

Maximum iterations Fitting model @
Mixer Hy, Weights a, 8

Classical optimizer

Initial ansatz STARN
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Quantum Anomaly Detection Settings

Quantum circuit depth D Distance metric UL

Maximum iterations Fitting model @
Mixer Hy, Weights a, 8

Classical optimizer Covering @

Initial ansatz STARN
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Quantum Anomaly Detection Pipeline
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Experiments & Results
Weekly website access count
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Experiments & Results
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A2 Numenta Experiments & Results
Daily CPU utilization

Test Time Series

Train Time Series
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A2 Numenta Experiments & Results
Daily CPU utilization

Anomaly Detection Results
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Experiments & Results
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Experiments & Results

Precision Time

QAD 85.00% ~10s

Isolation 80.00% ~1s
Forest

Local Outlier 100.00% ~28
Factor

DBSCAN 100.00% ~1s

ONE-Class 70.00% ~28
SVM
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Experiments & Results

Counts

Precision Time Shots
QAD 85.00% @—» 0
Isolation 80.00% ~1s
Forest
Local Outlier 100.00% ~28
Factor
DBSCAN 100.00% ~1s
ONE-Class 70.00% ~28
SVM [
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Experiments & Results

Precision Time —
QAD 85.00% @—» 4
Isolation 80.00% ~1s
Forest
[ " [ 7
Local Outlier 100.00% ~2Ss 9 o
Factor 7
DBSCAN 100.00% ~1s Cove 0T .
VOUs
ONE-Class 70.00% ~3s 0l el
SVM mul S - =
Quantum

states
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Experiments & Results
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Its

Anomaly Detection Resu

Experiments & Results
Daily CPU utilization
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What did we achieve

@ Customizable detection
ﬁ High interpretability

@ =1 General-purpose efficiency

|
N\ /

'@' Novel approach

What'’s up next

!u“ Model and metric selection

Long-range scalability

Multivariate detection
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