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Use-case dependency: 
Methods are often tailored 

to specific applications, 
reducing adaptability.

Limited sensitivity control: 

Hard to adjust how strict or 

lenient the detection should 

be.

Evolving anomaly types: 

New anomalies require 

frequent model updates to 

stay effective.

Interpretability:

Many models act as 

black boxes, making 

results hard to explain.
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The work at a glance

Focus
Time series analysis

Task
Anomaly Detection

Novelty
Quantum Optimization
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QAOA: Quantum Approximate Optimization Algorithm
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2. Initial ansatz on 𝛾, 𝛽 
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QAOA: Quantum Approximate Optimization Algorithm

1. Instance problem 𝐻𝑃 , 𝐻𝑀

 

2. Initial ansatz on 𝛾, 𝛽 

3. Run the circuit and measure 

4. Classical optimization for 

𝑓(𝛾, 𝛽) 

5. Adjust angles and re-run 

    circuit 
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HyperParameters Parameters

Quantum circuit depth Distance metric

Maximum iterations Fitting model
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Quantum 
states

Counts

Shots

𝑧𝑖 = [1010011 … 0101]

𝑧𝑗 = [1100100 … 0100]

𝑧𝑘
∗ = [0101010 … 1111]
⋮

Anomalies

Quantum Solver

𝑧∗ = [0101010 … 1111]

Classical Solver
We’re not after a fixed result — we want an 

architecture that can learn.

The detection acts as a black box — binary 

outputs with little interpretability.

Quantum Power

PROBLEMs

9



Quantum Anomaly Detection Pipeline

1 2 3 4QUBO QAOA
SET 

COVERING

10



Inductive Monitoring System (IMS)

Set Covering

Training Data

11

V. N. Smelyanskiy et al., “A near-term quantum computing approach for hard computational problems in space exploration,” 2012



Inductive Monitoring System (IMS)

Set Covering

Training Data Set Covering

11

V. N. Smelyanskiy et al., “A near-term quantum computing approach for hard computational problems in space exploration,” 2012



Set Covering

11

𝑧𝑘
∗ = [0101010 … 0011]

Inductive Monitoring System (IMS) Quantum Anomaly Detection



Set Covering

11

𝑧𝑘
∗ = [0101010 … 0011] Centers

Inductive Monitoring System (IMS) Quantum Anomaly Detection



Inductive Monitoring System (IMS)

Set Covering

12

𝑔𝜖 𝑧, 𝜁 , 𝜂  ≔ 𝜁 ෍

𝑖,𝑗

𝑎𝑖𝑗𝑧𝑖𝑧𝑗  − 𝜂 ෍

𝑖

𝑏𝑖𝑧𝑖

Quantum Anomaly Detection



Inductive Monitoring System (IMS)

Set Covering

12

𝑔𝜖 𝑧, 𝜁 , 𝜂  ≔ 𝜁 ෍

𝑖,𝑗

𝑎𝑖𝑗𝑧𝑖𝑧𝑗  − 𝜂 ෍

𝑖

𝑏𝑖𝑧𝑖

Quantum Anomaly Detection

GOAL

Find 𝜁∗, 𝜂∗ such that

Given 𝑧∗
 

MAX normal points within the covering 

MAX anomalies outside the covering



Inductive Monitoring System (IMS)

Set Covering

12

𝑔𝜖 𝑧, 𝜁 , 𝜂  ≔ 𝜁 ෍

𝑖,𝑗

𝑎𝑖𝑗𝑧𝑖𝑧𝑗  − 𝜂 ෍

𝑖

𝑏𝑖𝑧𝑖

Quantum Anomaly Detection

GOAL

Find 𝜁∗, 𝜂∗ such that

Given 𝑧∗
 

MAX normal points within the covering 

MAX anomalies outside the covering

• 𝜖             represents the covering;

• 𝑎𝑖𝑗     penalizes the overlaps;

• 𝑏𝑖       encourages all points to be included in at least one box;

• 𝜁, 𝜂   tunable parameters.
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Quantum circuit depth Distance metric

Maximum iterations Fitting model

Mixer Weights 𝛼 , 𝛽
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Quantum states

Counts

Shots

Weekly website access count
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Numenta Anomaly Benchmark (NAB) dataset: 𝑒𝑐2_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_5𝑓5533

Time
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Experiments & Results

DBSCAN Local Outlier Factor

?
?

Daily CPU utilization
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What did we achieve What’s up next
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Customizable detection

High interpretability

General-purpose efficiency

Novel approach

Model and metric selection

Long-range scalability

Multivariate detection
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